106 research outputs found

    Real-time Water Waves with Wave Particles

    Get PDF
    This dissertation describes the wave particles technique for simulating water surface waves and two way fluid-object interactions for real-time applications, such as video games. Water exists in various different forms in our environment and it is important to develop necessary technologies to be able to incorporate all these forms in real-time virtual environments. Handling the behavior of large bodies of water, such as an ocean, lake, or pool, has been computationally expensive with traditional techniques even for offline graphics applications, because of the high resolution requirements of these simulations. A significant portion of water behavior for large bodies of water is the surface wave phenomenon. This dissertation discusses how water surface waves can be simulated efficiently and effectively at real-time frame rates using a simple particle system that we call "wave particles." This approach offers a simple, fast, and unconditionally stable solution to wave simulation. Unlike traditional techniques that try to simulate the water body (or its surface) as a whole with numerical techniques, wave particles merely track the deviations of the surface due to waves forming an analytical solution. This allows simulation of seemingly infinite water surfaces, like an open ocean. Both the theory and implementation of wave particles are discussed in great detail. Two-way interactions of floating objects with water is explained, including generation of waves due to object interaction and proper simulation of the effect of water on the object motion. Timing studies show that the method is scalable, allowing simulation of wave interaction with several hundreds of objects at real-time rates

    Fast occlusion sweeping

    Get PDF
    Abstract. While realistic illumination significantly improves the visual quality and perception of rendered images, it is often very expensive to compute. In this paper, we propose a new algorithm for embedding a global ambient occlusion computation within the fast sweeping algorithm while determining isosurfaces. With this method we can approximate ambient occlusion for rendering volumetric data with minimal additional cost over fast sweeping. We compare visualizations rendered with our algorithm to visualizations computed with only local shading, and with a ambient occlusion calculation using Monte Carlo sampling method. We also show how this method can be used for approximating low frequency shadows and subsurface scattering. Realistic illumination techniques used in digitally synthesized images are known to greatly enhance the perception of shape. This is as true for renderings of volume data as it is for geometric models. For example, Qiu et al. [1] used full global illumination techniques to improve visualizations of volumetric data, and Stewart [2] shows how computation of local ambient occlusion enhances the perception of grooves in a brain CT scanned dataset. Tarini et al. In this paper, we provide a new solution for ambient occlusion computation that is significantly faster than existing techniques. The method integrates well with a volumetric ray marching algorithm implemented on the GPU. While not a full global illumination solution, ambient occlusion provides a more realistic illumination model than does local illumination, and permits the use of realistic light sources, like skylights. For accelerating our ray marching algorithm, we build a volumetric signed distance field using the fast sweeping method, and we embed our ambient occlusion approximatio

    BILSAT: Advancing Smallsat Capabilities

    Get PDF
    Small spacecraft technologies and capabilities are evolving to the point where the BILSAT 120kg spacecraft will this year demonstrate capabilities and performance similar to the 320kg UoSAT-12 mission launched in 1999. Over the past few years, the design of small satellites has evolved from simple curiosities to effective, high performance systems, capable of competing with much bigger and much more expensive spacecraft. Within the framework of an agreement between SSTL and TUBITAK-BILTEN (The Information Technologies and Electronics Research Institute), a non-profit government laboratory located in Ankara, Turkey, a Technology Transfer Program was started in August 2001. This program includes the design, manufacture and launch of one Enhanced SSTL microsatellite platform, one engineering model for use in Turkey and the training of engineers in all aspects of the spacecraft design. Detailed design began using the Enhanced SSTL microsatellite platform as the starting point. The end product that will be launched in the summer of 2003, is the most advanced spacecraft ever designed by SSTL, carrying two advanced payloads developed by TUBITAK-BILTEN. The spacecraft is a highly optimised satellite, with a mass of 120kg and including 14 cameras (in several imager arrangements), a 10m/s class resistojet propulsion system, VHF/UHF and S-band RF systems, tried and tested OBDH units in parallel with newly designed mass data storage and processing units, all this topped by a high performance AODCS subsystem, including two star trackers, GPS receiver (for both orbit and attitude determination), rate gyros, four momentum/reaction wheels, and what will be the first operational use of Control Momentum Gyros on a small spacecraft, to perform high agility manoeuvres. These units will be used to achieve the missions specified for this project, mainly full imaging of Turkey, stereoscopic imaging of selected targets, a Digital Elevation Map of Turkey, and communications. The present paper discusses briefly the technical characteristics of the spacecraft, but focuses on the mission aspects and how the different subsystems (namely the new subsystems and payloads) will be used to accomplish the mission. The operational modes of the spacecraft are discussed and the interaction of the AODCS subsystem with the OBDH and Imaging system is described in detail

    Triglyceride-glucose index levels in patients with congenital hypogonadotropic hypogonadism and the relationship with endothelial dysfunction and insulin resistance

    Get PDF
    Introduction: The risk of cardiometabolic diseases is increased in patients with hypogonadism. The triglyceride-glucose (TyG) index is a novel surrogate marker of insulin resistance and is associated with cardiovascular diseases. We investigated the TyG index levels and the relationship with endothelial dysfunction and insulin resistance in patients with congenital hypogonadotropic hypogonadism (CHH). Material and methods: A total of 98 patients with CHH (mean age 21.66 ± 1.99 years) and 98 healthy control subjects (mean age 21.69 ± 1.21 years) were enrolled. The demographic parameters, TyG index, asymmetric dimethylarginine (ADMA), high-sensitivity C-reactive protein (hs-CRP), and homeostatic model assessment of insulin resistance (HOMA-IR) levels were measured for all participants. Results: The patients had higher waist circumference (p < 0.001), triglycerides (p = 0.001), insulin (p = 0.003), HOMA-IR (p = 0.002), ADMA (p < 0.001), and TyG index (p < 0.001) levels and lower HDL-C (p = 0.044) and total testosterone (p < 0.001) levels compared to healthy control subjects. TyG index levels significantly correlated with the ADMA (r = 0.31, p = 0.003) and HOMA-IR (r = 0.32, p < 0.001) levels. TyG index was also determinant of HOMA-IR levels (ß = 0.20, p = 0.018). Conclusion: The results of the present study show that patients with CHH had increased TyG index levels. Also, the TyG index is independently associated with insulin resistance in patients with CHH. Long-term follow-up studies are warranted to find out the role of the TyG index in determining cardiometabolic risk in patients with hypogonadism.

    Comparison of CT and integrated PET-CT based radiation therapy planning in patients with malignant pleural mesothelioma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>When combined with adequate tumoricidal doses, accurate target volume delineation remains to be the one of the most important predictive factors for radiotherapy (RT) success in locally advanced or medically inoperable malignant pleural mesothelioma (MPM) patients. Recently, 18-fluorodeoxyglucose positron emission tomography (PET) has demonstrated significant improvements in diagnosis and accurate staging of MPM. However, role of additional PET data has not been studied in RT planning (RTP) of patients with inoperable MPM or in those who refuse surgery. Therefore, we planned to compare CT with co-registered PET-CT as the basis for delineating target volumes in these patients group.</p> <p>Methods</p> <p>Retrospectively, the CT and co-registered PET-CT data of 13 patients with histologically proven MPM were utilized to delineate target volumes separately. For each patient, target volumes (gross tumor volume [GTV], clinical target volume [CTV], and planning target volume [PTV]) were defined using the CT and PET-CT fusion data sets. The PTV was measured in two ways: PTV1 was CTV plus a 1-cm margin, and PTV2 was GTV plus a 1-cm margin. We analyzed differences in target volumes.</p> <p>Results</p> <p>In 12 of 13 patients, compared to CT-based delineation, PET-CT-based delineation resulted in a statistically significant decrease in the mean GTV, CTV, PTV1, and PTV2. In these 12 patients, mean GTV decreased by 47.1% ± 28.4%, mean CTV decreased by 38.7% ± 24.7%, mean PTV1 decreased by 31.1% ± 23.1%, and mean PTV2 decreased by 40.0% ± 24.0%. In 4 of 13 patients, hilar lymph nodes were identified by PET-CT that was not identified by CT alone, changing the nodal status of tumor staging in those patients.</p> <p>Conclusion</p> <p>This study demonstrated the usefulness of PET-CT-based target volume delineation in patients with MPM. Co-registration of PET and CT information reduces the likelihood of geographic misses, and additionally, significant reductions observed in target volumes may potentially allow escalation of RT dose beyond conventional limits potential clinical benefits in tumor control rates, which needs to be tested in future studies.</p

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    • 

    corecore